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Abstract. We present a simple, model-independent proof that filtered colimits commute with
finite limits in any (∞, 1)-category with finite limits and filtered colimits that satisfy descent.
This includes the (∞, 1)-category of ∞-groupoids as well as any other ∞-topos. We also show
that a larger class of colimits, called confluent colimits, commute with pullbacks under similar
assumptions. This simplifies results of Lurie. Our proof is extracted from a result in homotopy
type theory due to Sojakova, van Doorn and Rijke.

1. Introduction

A fundamental result in 1-category theory says that filtered colimits in Set commute with finite
limits. In his foundational work on higher topos theory [1], Lurie established the corresponding
result in higher category theory: filtered colimits in the (∞, 1)-category S of spaces (or any other
∞-topos) commute with finite limits. A somewhat simpler proof appears in Kerodon [2, Tag
05XR].

In this note we present a yet simpler proof that filtered colimits commute with finite limits in
S. Unlike previous proofs, ours is model-independent in the sense that it can readily be applied
to any reasonable notions of ‘(∞, 1)-category’ and ‘space’, including in the internal logic of an
(∞, 1)-topos. We rely only on the characterisation of cofinal functors, the theory of pointwise Kan
extensions, straightening/unstraightening for left fibrations, and descent in S. In fact our proof
applies not only to S but to any (∞, 1)-category with descent.

By definition, general finite limits can be expressed in terms of pullbacks and terminal objects.
Also by definition, filtered colimits commute with terminal objects, and so the non-trivial claim
is that filtered colimits commute with pullbacks. Here it is natural to consider not only filtered
colimits, but colimits indexed by a more general class of categories which we dub confluent. We
show that confluent colimits commute with pullbacks, meaning that pullbacks form a sound doc-
trine. This fact was shown independently by Rezk [3] and the first author in earlier work. It
is a phenomenon specific to higher category theory: pullbacks do not form a sound doctrine in
1-category theory.

We will present two versions of the argument. The first is expressed in terms of fibrations of
categories, i.e. it is ‘unstraightened’, and applies to S but not general categories. The second
version is ‘straightened’ and applies to any (∞, 1)-category with descent. We emphasize that these
two proofs can be read independently of each other. They follow the same pattern and are based
on the same core idea.

At a non-rigorous level, the idea can be explained as follows. For J confluent (see Definition 1),
we would like to establish an equivalence of the following form, given a cospan of diagrams A →
C ← B.

colim
x:J

A(x)×C(x) B(x) ≃ colimA×colimC colimB

We first establish the following intermediate result involving a map of diagrams B → C and an
object x : J . This result crucially relies on descent.

C(x)×colimC colimB ≃ colim
y:J, f :x→y

C(x)×C(y) B(y)
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Given this, we compute as follows.

colimA×colimC colimB

≃ colim
x:J

(A(x)×colimC colimB) by universality of colimits

≃ colim
x:J

(
A(x)×C(x) C(x)×colimC colimB

)
by pullback pasting

≃ colim
x:J

(
A(x)×C(x) colim

y:J, f :x→y
C(x)×C(y) B(y)

)
by intermediate result above

≃ colim
x:J

colim
y:J, f :x→y

A(x)×C(y) B(y) by universality of colimits

≃ colim
x:J, y:J, f :x→y

A(x)×C(y) B(y) by formula for iterated colimit

≃ colim
x:J

A(x)×C(x) B(x) by cofinality

Acknowledgements. We thank Daniël Apol and Daniel Gratzer for helpful discussions.

2. Preliminaries

We consider higher categorical and homotopy-invariant notions by default. We take ‘category’
to mean (∞, 1)-category. We write S for the category of spaces and Cat for the category of small
categories. Given categories C, D, we write DC for the category of functors from C to D. We write
[1] for the category freely generated by objects 0, 1 : [1] and a morphism 0→ 1. We write C→ for
the category C[1] of arrows in C. We say a functor p : D → C is a left (resp. right) fibration if
it is right orthogonal to the left endpoint inclusion {0} → [1] (resp. the right endpoint inclusion
{1} → [1]). Explicitly, this means that the map D→ → D×C C→ is an equivalence, where C→ → C
selects the domain of a morphism. We say that p is a Kan fibration if it is both a left fibration
and a right fibration.

We denote the left adjoint to the forgetful functor S → Cat by |−| : Cat → S and call it
localisation. For any category C, the forgetful functor Lfib(C) → Cat/C from left fibrations over
C to categories over C admits a left adjoint which can be computed as follows. Given a functor
p : D → C, the free cocartesian fibration on p is given by D ×C C→, viewed as a category over C
via the codomain projection C→ → C. The free left fibration on p is the fibrewise localisation of
the free cocartesian fibration, so that the fibre over c : C is given by |D ↓ c| where D ↓ c is the
category D ×C C→ ×C {c}. Dually, the free right fibration on p has fibres given by |c ↓ D|.

We say a functor p : A→ B is cofinal if its reflection to Rfib(B) is an equivalence. Explicitly, this
means that for all b : B, the space |b ↓ A| is contractible. Cofinal maps and right fibrations form a
factorisation system on Cat, where the factorisation of p : D → C is given by the free right fibration
on p described above. Right fibrations are stable under base change along arbitrary functors, and
cofinal functors are stable under base change along left fibrations. So the factorisation of a map
into a cofinal functor followed by a right fibration is stable under base change along left fibrations.

We write Λ2
0 for the walking span, i.e. the category 1 ← 0 → 2. Thus a functor s : Λ2

0 → C is
given by a span s1 ← s0 → s2 in C.

Descent. In the fibrational perspective, we will use descent in the following form. By straightening-
unstraightening, Kan fibrations D → C are classified by functors C → S≃ into the groupoidal core
of S. These in turn correspond to maps |C| → S, which unstraighten to spaces X → |C| over the
localisation of C. Given a map of spaces X → |C|, the corresponding Kan fibration is the pullback
X ×|C| C. Given an arbitrary functor p : D → C, the free Kan fibration on p corresponds to the
map of spaces |p| : |D| → |C|.



CONFLUENT COLIMITS COMMUTE WITH PULLBACKS, GIVEN DESCENT 3

3. The fibrational perspective

Our aim in this section is to give a fibrational proof that confluent colimits commute with
pullback.

Definition 1. A category J is confluent if the diagonal functor ∆ : J → JΛ2
0 from J into the

category of spans in J is cofinal.

Explicitly, this means that for any span s : Λ2
0 → J , the category s ↓ J of cocones under s has

contractible localisation.

Lemma 2. A category J is confluent if and only if for every morphism f : x→ y in J , the functor
f ! : y ↓ J → x ↓ J given by composition with f is cofinal.

Proof. We have that f ! is cofinal if and only if, for every object g : x → x′ of x ↓ J , the category
(x′, g) ↓ (y ↓ J) has contractible localisation. This is equivalent to the category of cocones under

the span y
f←− x

g−→ x′. □

Lemma 3. If J is confluent and p : E → J is a left fibration, then E is confluent.

Proof. This can be deduced from the fact that Λ2
0 has an initial object. But we instead argue from

Lemma 2.
Given a morphism g : a→ b in E, we have to show that g! : b ↓ E → a ↓ E is cofinal. Consider

the following commutative square of categories.

b ↓ E a ↓ E

p(b) ↓ J p(a) ↓ J

g!

p(g)!

Since p is a left fibration, the vertical maps are equivalences. Since J is confluent, the bottom map
is cofinal. So the top map is also cofinal. □

Lemma 4. Let J be a confluent category and p : E → J a left fibration. Then the free right
fibration on p is a left fibration.

This means that the free right fibration on a left fibration is also the free Kan fibration. In this
way we get a remarkably simple description of free Kan fibrations.

Proof. Let q : E → J denote the free right fibration on p, so that the goal is to show that q is a Kan
fibration. That is, we have to show that for a morphism f : x→ y in J , the map E(y)→ E(x) on
fibres is an equivalence of spaces.

Now E(x) is given by colimE|x↓J , where E|x↓J : x ↓ J → S denotes the restriction of E : J → S
along x ↓ J → J . The map E(y) → E(x) corresponds to the map colimE|y↓J → colimE|x↓J
induced by restricting the shape of the colimit along f ! : y ↓ J → x ↓ J . This is an equivalence by
Lemma 2. □

Lemma 5. Let F : J ′ → J be a left fibration with J confluent. Then base change along F preserves
reflection of left fibrations to Kan fibrations.

Explicitly, this means that if p : E → J is a left fibration and q : E → J is the free Kan fibration
on p, then the induced map J ′ ×J E → J ′ ×J E over J ′ exhibits J ′ ×J E → J ′ as the free Kan
fibration on J ′ ×J E → J ′.

Proof. By Lemma 3, J ′ is also confluent. By Lemma 4, we can consider the reflection from left
fibrations to right fibrations instead of to Kan fibrations. Indeed base change along any left
fibration preserves reflection (from arbitrary functors) to right fibrations. □
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We are now ready to prove the main result.

Theorem 6. In the category S of spaces, confluent colimits commute with pullbacks.

Proof. Let J be a confluent category and consider a pullback square of functors J → S. By
straightening, these correspond to left fibrations over J :

Y ′ Y ′

X ′ X

⌟

We have to show that the induced square of localisations is a pullback:

|Y ′| |Y ′|

|X ′| |X|
By descent, this equivalently means that the following square is a pullback, where Y → X and
Y ′ → X ′ are the free Kan fibrations on Y → X and Y → X.

Y ′ Y

X ′ X
We know that X is confluent, by Lemma 3. So the above square is a pullback by Lemma 5. □

4. Unstraightened perspective

Now suppose C is an arbitrary category and J is confluent. We assume throughout that C has
pullbacks, J-colimits that satisfy descent, and universal colimits in general. We would like to show
that J-colimits commute with pullbacks in C.

Concretely, asking that J-colimits in C satisfy descent means the following. Given a functor
A : J → C, we have an adjunction between the slice categories CJ/A and C/ colimA. The left
adjoint CJ/A → C/ colimA sends an object B → A over A to colimB → colimA. The right
adjoint sends an object Y → colimA to the pullback A×∆colimA ∆Y viewed as an object over A
via the first projection, where ∆ : C → CJ is the diagonal functor.
The colimit of A satisfies descent if this adjunction defines an equivalence between C/ colimA

and the full subcategory of CJ/A spanned by those objects that are equifibred over A. Given
p : B → A, we say that B is equifibred over A if for every morphism f : x → y, the following
naturality square is cartesian.

B(x) B(y)

A(x) A(y)

⌟

We will refer to the reflection from CJ/A to its full subcategory of equifibred objects as equifibred
replacement. We claim that equifibred replacement has the following explicit description. Suppose
that p : B → A is some object over A, and consider the functor H : J→ → C given by the pullback

H := (A ◦ dom)×A◦cod (B ◦ cod). Our aim is to show that the left Kan extension B̃ : J → C of H
along dom : J→ → J is the equifibred replacement of p : B → A.

We first give a description of B̃. By the theory of pointwise Kan extensions, given x : J we have

that B̃(x) is the colimit in C of the restriction of H to J→ ↓ x. Explicitly, J→ ↓ x is the category
of spans y ← z → x in J where the endpoint x is fixed. Consider the functor x ↓ J → J→ ↓ x
which sends a morphism f : x→ y to the span y

f←− x
id−→ x.
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Lemma 7. The functor x ↓ J → J→ ↓ x defined above is cofinal.

Proof. Let y
f←− z

g−→ x be an arbitrary object of J→ ↓ x. We need to show that the category

(y
f←− z

g−→ x) ↓ (x ↓ J) has contractible localisation. This is the category consisting of c : C with

hx : x → c and a morphism of spans from y
f←− z

g−→ x to c
hx←− x

id−→ x, whose component map
x → x is the identity. The category of maps g′ : z → x with a witness that g′ ◦ idx ≃ g ◦ idx is
trivial, so the only data in the morphism of spans is a map hy : y → c together with a witness

that hy ◦ f ≃ hx ◦ g. Thus (y
f←− z

g−→ x) ↓ (x ↓ J) is equivalent to the category of cocones under

y
f←− z

g−→ x, which has contractible localisation since J is confluent. □

Thus B̃(x) is the colimit of the restriction of H to x ↓ J . This restriction H|x↓J : x ↓ J → C is
a pullback (∆A(x))×A◦cod (B ◦ cod).
The universal property of the left Kan extension B̃ says that it is freely generated by a natural

transformation α : H → B̃◦dom. Whiskering α with ∆ : J → J→, we get α∆ : H◦∆→ B̃◦dom◦∆.

Since H ◦ ∆ ≃ B and dom ◦ ∆ ≃ id, we get a natural transformation ι : B → B̃. The first

projection gives a natural transformation π1 : H → A ◦ dom, so by the universal property of B̃

we have q : B̃ → A with π1 = (qdom) ◦ α. It is straightforward to check that B
ι−→ B̃

q−→ A is a
factorisation of the original natural transformation p : B → A.

Lemma 8. B̃ is equifibred over A.

Proof. So far we have seen a description of the action of B̃ on objects x : J . We now also need
to describe its action on morphisms f : x → x′. This is not entirely immediate, since the shape

x ↓ J of the colimit describing B̃(x) is contravariant in x. The action on morphisms is naturally
described in terms of a span. We refer to the following diagram.

colimx↓J H|x↓J colimx′↓J H|x↓J ◦ f ! colimx′↓J H|x′↓J

B̃(x) B̃(x′)

A(x) A(x′)

∼

∼

∼

The top left morphism is induced by restricting the colimit shape along f !, and the top right
morphism by a transformation of diagrams of the same shape x′ ↓ J . The top left morphism
anyway ends up being an equivalence since f ! is cofinal by Lemma 2. Thus the upper middle
morphism is also an equivalence.

We would like to show that the bottom square is cartesian; equivalently this means showing
that the outer (right) square is cartesian. Since we assume C has universal colimits, it suffices to
show that for every object g : x′ → y of x′ ↓ J , the following square is cartesian.

(H|x↓J ◦ f !)(y, g) H|x′↓J(y, g)

A(x) A(x′)
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The square above can be seen to be equivalent to the left square in the following diagram. So it is
cartesian by pasting.

A(x)×A(y) B(y) A(x′)×A(y) B(y) B(y)

A(x) A(x′) A(y)

⌟

□

Lemma 9. The natural transformation ι : B → B̃ induces an equivalence on colimits.

Proof. By composition of left Kan extensions, the colimit of B̃ is equivalent to the colimit of H.
This is in turn equivalent to the colimit of H ◦∆ : J → C, since ∆ : J → J→ is cofinal (with left
adjoint dom : J→ → J). Now note that H ◦∆ ≃ B. □

Corollary 10. The factorisation B
ι−→ B̃

q−→ A of p : B → A exhibits B̃ as the equifibred replace-
ment of B.

Proof. By Lemma 8 and Lemma 9, using descent. □

Lemma 11. Equivariant replacement is stable under base change along A′ → A.

Proof. We start from a cartesian square in CJ :
B′ B

A′ A

⌟

This factorises into the following diagram involving equifibred replacement, since equifibred natural
transformations are at least stable under pullback.

B′ B

B̃′ B̃

A′ A
Our goal is to show that the bottom map is cartesian. Given an object x : J , we have to show

that B̃′(x)→ A′(x) is exhibited as a pullback of B̃(x)→ A(x). That is, we have to show that the
following square is cartesian.

colimx↓J ∆A′(x)×A′◦cod (B
′ ◦ cod) colimx↓J ∆A(x)×A◦cod (B ◦ cod)

A′ A
This follows from pullback pasting and universality of colimits. □

Theorem 12. Let J be a confluent category and let C be a category with pullbacks. Suppose that
C has J-colimits that satisfy descent. Suppose also that C has universal x ↓ J-shaped colimits for
all objects x : J . Then J-colimits commute with pullbacks in C.

Proof. Again we start from a cartesian square in CJ :
B′ B

A′ A

⌟
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We would like to show that the colimit functor CJ → C sends this to a cartesian square in C:
colimB′ colimB

colimA′ colimA
By descent, this equivalently means that the induced square involving equifibred replacements is
cartesian:

B̃′ B̃

A′ A
Indeed this holds by Lemma 11. □

Corollary 13. Let J be a confluent category, and let C be a category with pullbacks, J-shaped
colimits that satisfy descent, and universal filtered colimits. Then J-shaped colimits commute with
pullbacks in C.

Proof. By Theorem 12, it suffices to show that if J is confluent, then x ↓ J is filtered for any
object x : J . Since cod : x ↓ J → J is a left fibration and J is confluent, x ↓ J is confluent. So
x ↓ J-shaped colimits commute with pullbacks in spaces. We also know that x ↓ J has contractible
localisation, since it has an initial object. So x ↓ J-shaped colimits commute with arbitrary finite
limits. A direct argument shows that this means x ↓ J is filtered [3]. □

As shown by Rezk [3], we have the following relationship between filtered and confluent cate-
gories. On one hand, by the above we know that a category is filtered if and only if it is confluent
and has contractible localisation. Examples of categories that are confluent but usually not filtered
include groupoids (by Lemma 3 with J = 1). In some sense this is the only source of examples:
given a category J , we can view it as a groupoid-indexed family of categories by straightening the
functor J → |J |. Rezk shows that J is confluent if and only if all the fibres of this functor J → |J |
are filtered.

5. Discussion

The novel feature of our proof compared to earlier (∞, 1)-categorical arguments is the idea of
using descent to describe equifibred replacement, or in the fibrational perspective, reflection to
Kan fibrations. This idea is ubiquitous in HoTT, where it goes by the name of the encode-decode
method. In the case at hand, our description of equifibred replacement is an adaptation of the
main result in Sojakova, van Doorn, and Rijke’s treatment of sequential colimits in HoTT [4].
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