
Unordered addition from biproducts∗

David Wärn

University of Gothenburg
warnd@chalmers.se

A fundamental fact about commutative monoids is that given a finite number of elements,
their sum can be computed by adding the elements in any order. The naturals under addition
form a typical example of a commutative monoid. A natural number can be understood as an
isomorphism class of finite sets, and indeed the type FinSet of finite sets under coproduct forms
a higher kind of commutative monoid – to be precise, a symmetric monoidal category. While N
is a 0-type and FinSet is a 1-type, there is also a good generalisation of commutative monoids to
general homotopy types, namely E∞-spaces. The invertible counterpart to E∞-spaces spaces
are connective spectra. While (connective) spectra can easily be defined in homotopy type
theory – in short, one considers a sequence of pointed types where each one is the loop space
of the next – a definition of general E∞-spaces in homotopy type theory remains elusive.

The problem is the same as with other higher algebraic notions: there is an infinite tower
of coherences involved and we do not know how to state them all at once. What we can do is
state some of them. In particular, the fundamental fact about commutative monoids mentioned
above is expected to generalise to E∞-spaces in the following way. We say a type I is finite if
I merely is equivalent to a standard finite type [n] for some natural n, called the cardinality
of I. An unordered (n-)tuple of elements of X consists of a finite type I (of cardinality n)
together with a map I → X. Given an unordered tuple of elements of an E∞-space, we expect
to be able to define their sum. Moreover, we expect the usual rules for indexed sums to hold,
such as

∑
i

∑
j aij =

∑
(i,j) aij . In short, we say that E∞-spaces have unordered addition. For

example, FinSet has unordered addition since given a tuple J : I → FinSet, the sigma-type
(i : I)× J(i) is again a finite set.

While the notion of unordered addition is easy to express synthetically, it encapsulates
a lot of information. For example, writing {a, b} for the unordered pair given by the map
(a, b) : [2] → A, we have {a, b} = {b, a} since there is an equivalence [2] ≃ [2] swapping the two
elements. Hence any addition operation defined on unordered pairs must be commutative in
the naive sense that a + b = b + a. Moreover, the composite path {a, b} = {b, a} = {a, b} is
always reflexivity (essentially because the composite equivalence [2] ≃ [2] ≃ [2] is the identity),
meaning that the composite path a+ b = b+ a = a+ b is reflexivity. These are only two cases
of an infinite tower of coherences.

Now if connective spectra are examples of E∞-spaces, and E∞-spaces have unordered addi-
tion, it should follow that (connective) spectra have unordered addition. The goal of this work
is to prove this in homotopy type theory.

Let us first recall how addition is defined on a spectrum. First one defines general composi-
tion of paths, using path induction. This specialises to give composition in loop spaces. Since
we have infinite loop spaces in mind, we call this operation addition of loops. By induction on
n, one can then define the sum of an ordered n-tuple of loops. Since the underlying type of a
spectrum is in particular a loop space, this defines ordered addition on (the underlying type
of) a spectrum.

Unfortunately the above does not seem to help in defining unordered addition. Given an
unordered n-tuple of elements of X, we cannot apply induction on n since we cannot pick an
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element of a general type I of cardinality n ≥ 2. Moreover, there is an obstruction to defining
unordered composition on a general loop space: general loop spaces might not be commutative.
Any second loop space is commutative, by Eckmann–Hilton, but there is again an obstruction
to defining unordered composition since the braiding induced by Eckmann–Hilton may fail to
satisfy syllepsis.

Our solution to defining unordered addition in a spectrum is to take a step back and char-
acterise addition by a defining property.1 Given a spectrum X and a type I, we can form a
new spectrum XI which is the categorical product of I-many copies of X [4, Definition 5.4.1].
For a finite type I, unordered addition will be a map XI → X of spectra, characterised in the
following way. For each i : I, we get a map δi : X → XI whose jth component for j : I is idX
if i = j and 0 otherwise. Here we used that finite types have decidable equality, and that there
is a ‘zero morphism’ from any spectrum to any other. Addition will be the unique morphism
Σ : XI → X with the structure that for each i : I the composite Σ ◦ δi : X → XI → X is
the identity on X. An upshot of this characterisation is that ‘there is a unique morphism with
the following structure’ is a proposition, so to prove it we may assume I is purely equivalent to
a standard finite type [n]. The statement is immediate for n = 0, and the following theorem
deals with the case n = 2.

Theorem 1. Given spectra A,B,C and morphisms f : A → C, g : B → C, the type of triples
(h, p, q) where h : A × B → C2, p : f = h ◦ (idA, 0) and q : g = h ◦ (0, idB) is contractible. In
other words, there is a certain equivalence between A×B → C and (A → C)× (B → C).

Proof sketch. While a direct proof should be feasible, it is easy to get bogged down in path
algebra. We suggest a somewhat indirect proof. One first shows that for any spectra X, Y , the
type of morphismsX → Y is again a spectrum, since (X → Y ) ≃ Ω(X → Ω−1Y ). In particular,
A×B → C is a spectrum, and so has a well-defined addition. Hence given f and g, we obtain
a map f ◦ fst + g ◦ snd : A × B → C. Verifying that this determines an equivalence between
A×B → C and (A → C)×(B → C) amounts to showing distributivity of composition together
with the relation (idA, 0) ◦ fst+ (0, idB) ◦ snd = idA×B . This last relation can be understood as
a simple fact about Ω(A × B): an element of Ω(A × B) is given by the sum of its component
in Ω(A) and its component in Ω(B).

In short, we say that the (wild) category of spectra has biproducts. A more unbiased way
of saying this is that finite coproducts commute with finite products. This is a special case of
fibre sequences coinciding with cofibre sequences, and of finite colimits commuting with finite
limits, which is a defining feature of stable categories, of which the category of spectra is the
prime example.

Theorem 2. Given a spectrum X and a finite type I, the type of pairs (Σ, p), where Σ : XI → X
and p : (i : I) → idX = Σ ◦ δi, is contractible.

Proof sketch. More generally, we claim that in any wild higher category with associativity and
unit laws, given a zero object and biproducts, we also have that finite products are coproducts
in this way. The proof proceeds by a standard 1-categorical argument of reducing n-products
to binary products, carefully keeping track of witnesses of commutativity along the way. This
map Σ simply corresponds to the codiagonal map from a coproduct of copies of X back to
X.

1More precisely, this will generally be structure and not property.
2A × B denotes the product in the category of spectra, which as a sequence of pointed types is given

component-wise by products of pointed types.
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Thus spectra do have unordered addition. We define addition as a map of spectra, but it
in particular gives an operation Σ : XI

0 →pt X0 on the underlying type X0 of X. From its
characterisation, we can also directly verify expected properties.

We now discuss a couple of applications. First we consider Eckmann-Hilton, which says that
for any type A, the second loop space Ω2A has commutative addition. In general, Ω2A will not
be a spectrum, and indeed it might not have unordered addition. However by the stabilisation
theorem [1], the 0-truncation ∥Ω2A∥0 is always a spectrum in a canonical way. Hence ∥Ω2A∥0
has unordered addition. It can be seen that this addition is compatible with the ordered addition
on Ω2A. Thus for a, b : Ω2A, we have |a+ b|0 = |b+a|0, or equivalently, ∥a+ b = b+a∥−1. This
can be understood as a weak form of Eckmann–Hilton. Applying this result to the universal
case of a, b : Ω2(S2∨S2) and appealing to the existence property of homotopy type theory3, one
can recover the full strength of Eckmann–Hilton. More interestingly, we can apply the same
reasoning to ∥Ω3(S3 ∨ S3)∥1 to get a proof of syllepsis on general third loop spaces.

Our second application is to the definition of the sign homomorphism. We present a version
of Cartier’s argument (see also [5]). Synthetically, the sign homomorphism consists of a pointed
map BSn →pt BS2 from the type BSn of n-element types to the type BS2 of 2-element types.

We describe what this function does to a general n-element type A. Note that the type
(
A
2

)
of

2-element subsets of A is a finite type of cardinality
(
n
2

)
. Importantly, because the symmetric

group S2 on two elements is abelian, BS2 is a spectrum, and so has unordered addition. Hence
the sum of all 2-element subsets of A is a well-defined element of BS2. We may think of this
2-element type as the type of orientations of A. The map sending A to its type or(A) of
orientations is the (delooping of the) sign homomorphism.

For example, we have or(A) = A when A has cardinality 2, since then A is the unique
2-element subset of A, and the sum over a singleton is simply that value. We have or([n]) = [2],
since each 2-element subset of [n] has a canonical element given by the minimum, and an
inhabited 2-element set is [2], the basepoint or zero of BS2, and any indexed sum of zeroes is
zero. We similarly have or(A + B) = or(A) + or(B), where A + B means coproduct of finite
types and or(A) + or(B) means addition in BS2: any 2-element subset of A + B is either a
subset of A, a subset of B, or given by an element of A together with an element of B. In the
third case, we can canonically pick an element (say, the one in A), so this third term does not
contribute to the sum describing or(A+B).

More generally, we have or((a : A)×B(a)) = or(A′) +
∑

a:A or(B(a)) where A′ is the subset
of A consisting of those a for which B(a) has odd cardinality. To see this, we first note that
there are two kinds of 2-element subsets of (a : A)×B(a): those where the first components are
the same, and those where they differ. The contribution of the first kind to or((a : A)×B(a)) is
precisely

∑
a:A or(B(a)). As for the second kind, such a 2-element subset is given by a 2-element

subset I of A together with b : (i : I) → B(i). The ‘underlying’ type is simply I. Since the
type BS2 →pt BS2 is 0-truncated, the sum

∑
j:J I depends only on the cardinality of J . Since

S2 has characteristic two, the sum moreover depends only on the parity of the cardinality of
J . Because of this, the contribution of the second kind is given by those two-element subsets
I :

(
A
2

)
for which (i : I) → B(i) has odd cardinality, which is precisely those I that are actually

subsets of A′. This completes the proof of the stated identity. It seems to be closely related to
the notion of graded commutativity.

Our third application is to the Barratt–Priddy–Quillen theorem. This concerns the sphere
spectrum S, which is freely generated by an element e : S0 of its underlying type. The Barratt–
Priddy–Quillen theorem describes a relationship between S and the type of finite sets, mediated

3This is an unpublished result of Kapulkin and Sattler: given a closed term of type ∥A∥−1, there is also a
closed term of A.
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by a map FinSet → S0 from finite sets to the underlying type of S. We can describe this map
in terms of unordered addition: it sends I : FinSet to

∑
i:I e. Many properties of this map are

readily verified, such as the fact that it respects addition. One expects that the action on π1

corresponds to the sign homomorphism Sn → S2, under the equivalence π1(S) ≃ S2 [2].
We can also describe the associated map from the delooping BS∞ of the infinite symmetric

group. First we give a description of BS∞ as a higher inductive type: it is generated by terms
ι(A) : BS∞ for A : FinSet and paths q(A) : ι(A) = ι(A + 1). This definition, which is uniform
in the cardinality of A, can also be expressed as a sequential colimit, which shows that BS∞
is actually 1-truncated [3]. Next, we define a map BS∞ →pt S0 by ι(A) 7→ (

∑
a:A e) − |A|e,

where |A| denotes the cardinality of A. The action on paths of q(A) is obtained by writing∑
a:A+1 e = e +

∑
a:A e and |A + 1|e = e + |A|e. The factorisation of this map through the

path-component Ŝ0 of S0 at the basepoint should be an acyclic map BS∞ → Ŝ0. We do not
know if the acyclicity of this map can be established in homotopy type theory.
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